If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/a^2=1
We move all terms to the left:
1/a^2-(1)=0
Domain of the equation: a^2!=0We multiply all the terms by the denominator
a^2!=0/
a^2!=√0
a!=0
a∈R
-1*a^2+1=0
We add all the numbers together, and all the variables
-1a^2+1=0
a = -1; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-1)·1
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2}{2*-1}=\frac{-2}{-2} =1 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2}{2*-1}=\frac{2}{-2} =-1 $
| 1/a^2=0 | | 31+a=45 | | 3x^2-1x-70=0 | | 3x+5(.5x+17)=30 | | 13x+15=17x-12 | | 0=9x^2+18x | | 12-b=84 | | 4w=-132 | | x^2+10x-148=0 | | 3=9-v | | 129+2x=360 | | (3x+4)+(2x-1)=0 | | 4.4c=198 | | (1/a)^2=4 | | 54-2w^2-3w=0 | | 129/15x12=151.2 | | -2w^2-3w+54=0 | | (2x+5)°+75=180 | | 50-3x=-10 | | 1/a^2=4 | | 5b=8b-3b | | 3k=40 | | C(-10)=6-c(5) | | 3x-11=8x-9 | | 3(x+4)+6(x+4)=54 | | 4x-2=1x+2 | | 5(y-3)=y-1 | | -24=5(x-2)-7x | | 3+8x=4 | | 52+68+x=180 | | 13x-4=-11 | | 4(x^2-20x+100)=0 |